NASA Technical Memorandum 100814
ICOMP-88-3

Distributed Computation of Graphics
Primitives on a Transputer Network

Graham K. Ellis
Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio

- (NASA-TN-100814) DISYRIBUTED CCMPUTATICON OF N88~-15147

GQAPBICS ERIBITIVES CN A TH2ASFUTER NEIWCEK
(KkASA) 7T p CSC1 09B
Unclas

G3/61 0128931

Prepared for the

1988 Summer Computer Simulation Conference
sponsored by the Society for Computer Simulation
Seattle, Washington, July 25-28, 1988

CASE WESTERN

W\ RESERVE UNIVERSITY

ORIGINAL PAGE IS
OE POOR QUALITY

DISTRIBUTED COMPUTATION OF GRAPHICS PRIMITIVES ON A TRANSPUTER NETWORK

Graham K, Ellis*
Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A method is developed for distributing the compu-
tation of graphics primitives on a parallel process-
ing network. Off-the-shelf transputer boards are used
to perform the graphics transformations and scan-
coversion tasks that would normally be assigned to a
single transputer based display processor. Each node
in the network performs a single graphics primitive
computation. Frequently requested tasks can be dupli-
cated on several nodes.

The results indicate that the current distribu-
tion of commands on the graphics network shows a per-
formance degradation when compared to the graphics
display board alone. A change to more computation
per node for every communication (perform more com-
plex tasks on each node) may cause the desired
increase in throughput.

INTRODUCTION

In an effort to increase the graphics rendering
speed on a transputer based display board, a method
has been developed that off loads the scan-conversion
tasks to a network of other processors and frees the
display board for performing only display tasks.

NETWORK ARCHITECTURE

The network architecture of the graphics computa-
tion network is shown in Figure 1. The input control
master node reads in the drawing command from an
application program. Since the configuration of the
network and the primitives present on each node of
the network are known, a decision can be made on the
correct routing path for the command. For every com-
mand received by the input master node, a copy is
sent to the output master node. These commands are
queued up in a first-in-first-out (FIFO) buffer on
the output master control node for later processing.

For the commands that do not get processed on
the graphics network such as display board hardware
commands, the command is sent directly to the output
control master FIFO buffer and no command is sent to
the graphics network.

NETWORK _COMMUNICATION

The graphics commands are distributed through
the network by using smart buffer processes that run
concurrently (multi-tasked) on each processor in the
network. The configuration of the buffers contained
on each processor in the network is shown in Figure 2.

Commands sent anywhere on the network are pre-
fixed with a command byte that specifies the type of

*Senjor Research Associate (work funded under Space
Act Agreement C99066G) .

data to expect next. There are four tags that each
input buffer uses to make network routing decistions.
They are as follows:

tag.global
tag.work
tag.dump
tag.result

The input buffer process controls commands sent
from both the input and output master control nodes.
The input buffer reads a command from any one of
three input tinks. These are multiplexed inputs that
use the occam ALT construct (Pountain 1987).

Because the transputer graphics network used in
this example is a multiple instruction multiple data
stream (MIMD) parallel processor with no shared mem-
ory, a method was devised to distribute the graphics
data that is normally globally scoped to the entire
network of processors. This was required to keep
track of which window or screen coordinate system was
active so the scan-conversion tasks would be per-
formed properly.

When the input buffer process gets a tag.global
command, the command is sent to both the staging
buffers on the current processor and the adjacent pro-
cessor. Routing decisions are made so that each pro-
cessor only gets one copy of the tag.global command
and its respective data packet. The data flow for the
tag.global command is shown in Figure 3.

If the tag is tag.work, the next packet of data
is read from the input channel to determine the desti-
nation of the work packet. The destination is deter-
mined only by the processor number, see Figure 1.
Routing decisions are made by comparing the current
node number with the destination node. If the work
packet is for the current node, the data is sent to
the first of several staging buffers. If the work
packet is for another node, the data is sent to an
adjacent processor based on the routing algorithm.

The return buffer is also used when routing the
tag.work commands, but only is used by processors 0
and 8. This allows data to be sent to the processing
node below for the tag.work or tag.global commands.
See Figure 3 for the network data fiow for the
tag.global command.

The staging buffer processes are used to buffer
pending graphics command requests as well as to keep
the network from deadlocking. It is the input con-
trol master nodes responsibility to keep track of how
many of each command are pending on the network. The
number of commands for each node cannot exceed the
number of staging buffers in the network or the net-
work will deadlock. MWhen the output master control
buffer receives data off of the network (this is dis-
cussed below), a command is sent to the input master

control node to decrement the command counter for the
appropriate graphics command.

The staging buffers act as FIFO queues and the
requested graphics commands step through the staging
buffers outputting to the graphics computation proc-
ess. It is the graphics computation process that
performs the scan-conversion task for the requested
command. The computed data is packed into an array.
The process then waits until a tag.dump command is
received before dumping the computed data to the
return buffer process.

If the tag is tag.dump, the input buffer sends a
message directly to the graphics computation process
and bypasses the staging buffers completely. When
the graphics computation process receives the tag.dump
command, it sends its computed data to the return
buffer process where it is routed to the output mas-
ter node. Figure 4 shows the routing from the output
master control node for the tag.dump command.

Once the computed data are received by the return
buffer process, the tag, tag.result, is attached to
the beginning of the data packet to identify it as
computed data. Based on the current processor number,
routing decisions are made to send the data to the
output master control node. The data flow to the out-
put master control node for tag.result is shown in
Figure 5.

SYNCRONIZATION

On a network of processors such as the one used
for the graphics engine, it is not possible to deter-
mine the exact order of completion of any of the com-
putations distributed on the network. Initially, it
may not seem important to maintain the correct
sequence of drawing commands that get sent to the dis-
play processor; however, when dealing with multiple
windows, multiple drawing colors, and screen double-
buffering, the order the display board receives the
commands is critical. For example, if the applica-
tion sends the following sequence of commands:

draw.line()
select.window()
draw.line()

and the graphics network completes the computations in
a different order such as:

select.window()
draw.line()
draw.line()

the desired result will not be achieved.

The output master control node controls the syn-
chronization of the graphics network. It does this
by reading the commands stored in its FIFO queue and
then sending a tag.dump command to the graphics net-
work that gets routed to the appropriate primitive
computation node. The command signals the primitive
computation node to send its result back to the out-
put master control node. Regardless of the completion
order of the computations distributed on the network,
the output node controls the data flow to the graph-
ics display board. This maintains the correct FIFO
ordering of the requested graphics display commands.

PERFORMANCE

The transputer serial links used on the graphics
network are set to transfer data at 10 Mbits/sec
(INMOS 1986). To check to see if the devised network
did indeed increase the graphics throughput rate, sev-
eral test cases were run to determine the scan-
conversion, data transfer, and data display times.
The tests were performed on a subset of the full net-
work. Two processors, a compute node and the display
board were used and all timings were taken using the
transputer's high-priority microsecond resolution
timer.

The results for two test cases are shown below
in Tables 1 and 2. The distributed results are com-
pared to the computation/display times for the dis-
play board alone. All computations were performed in
integer device coordinates.

The first case tested was a line scan-conversion
using Bresenham's integer line algorithm (Foley and
Van Dam 1982). Times for scan-conversion, data trans-
fer, and display are given in Table 1.

The second case tested was a circle scan-
conversion using Bresenham's integer circle algorithm.
These results are shown in Table 2.

Unfortunately, the results presented above do
not shown any advantage to performing the distributed
computation of graphics primitives. With the current
data transfer rates, the data transfer time dominates
over the computational time.

A more advantageous computation scheme would be
to perform more computation on each node in the net-
work. For example, the mapping from three-dimensional
world coordinates to two-dimensional integer device
coordinates could be performed on the graphics compu-
tation network and then only the integer draw commands
would have to be sent to the display board.

SUMMARY

An array of transputers was designed to speed
graphics computations by off loading scan-conversion
tasks and freeing the display processor for display
only. Because of the current bandwidth of the trans-
puter serial links, and the small computation time
for the scan conversions tested, a performance degra-
dation was observed on the network when compared to
the display board by itself. Until higher bandwidth
serial links are available on the transputers or more
computation is performed on each node of the graphics
network for every communication, this method of dis-
tributing the graphics workload does not offer any
performance gains.

REFERENCES
Foley, J.D.; and Van Dam, A. 1982. Fundamentals of

Interactive Computer Graphics. Addison-Wesley, Read-
ing, MA.

INMOS Corp. 1986. Transputer Reference Manaul.
INMOS Corp., Colorado Springs, CO.

Pountain, D. 1987. A Tutorial Introduction to OCCAM
Programming. INMOS Corp., Colorado Springs, CO.

TABLE 1. - COMPARISON OF LINE COMPUTE/DISPLAY TIMES
Operations performed Time,
783
Scan convert line (0,0) to (511, 511) 7933
Transmit computed data to display board | 12 5i2
Transmit data and display line 28 400
Scan convert, transmit, and display 36 399
Graphics board draw line command 14 887
Graphics board fast draw line command 3542
TABLE 2. - COMPARISON OF CIRCLE
COMPUTE/DISPLAY TIMES
Operations performed, Time,
radius = 100, Mus
center = (256, 256)
Scan convert circle 2338
Transmit computed data to display board | 37 362
Transmit and display circle 54 685
Scan-convert, transmit, display 57 064
Graphics board circle draw command 37 349

I 0 1 —-I 2 3
FROM INPUT
USER = —] MASTER
PROGRAM NODE , - . »
A
Y
10 2 9 10 11
GRAPHICS OUTPUT
DISPLAY | MASTER
BOARD NODE
] 12 13 —I 14 15

FIGURE 1. - MULTIPLE PROCESSOR GRAPHICS DISPLAY ENGINE SHOWING
PROCESSOR NUMBERS FOR ROUTING COMPUTATIONS.

A

 S—

INPUT
BUFFER

d
CD BUFFERS
/

GRAPHICS
COMPUTATION

(

/

/

STAGING

RETURN
BUFFER

\

FIGURE 2. - COMPUTE NODE BUFFER PROCESSES AND COMMUNICATION

ROUTING.
— ° = 1 2 L1 3
FROM INPUT
USER o] wasTER Y
PROGRAM NODE s s L L
A -
y y
10 8 F— 9 10 F—{ 11
GRAPHICS ouTPUT
DISPLAY™] MASTER
BOARD NODE y
12— 13 T"l“’ > 15|

FIGURE 3. - DATA FLOW USED FOR DISTRIBUTING WORK OR GLOBAL
NETWORK COMMANDS.

0 »1 1 -——ni 2 »l 3
FROM INPUT A
USER s f MASTER
PROGRAM NODE y b s > 6 —{ 7
'y
 J
T0 . .
s b 9 =1 10 }—] n
GRAPHICS ouTPUT
DISPLAY™ MASTER A
BOARD NODE
L o :13‘414 »{ 15

FIGURE 4, - DATA FLOW FOR REQUESTING INFORMATION FROM NETWORK.

0 |= 1 -<——| 2 j= 3
FROM INPUT
USER] masTER Y
PROGRAM NODE y le— 5 fe—] 6 fe 7
A
Y
T0 < - <
8 9 J 10— n
GRAPHICS OuTPUT
DISPLAY™ MASTER
BOARD NODE Y
A 12 f— 13 4—-I 14 fe 15|

FIGURE 5, - DATA FLOW FOR SENDING COMPUTED DATA TO OUTPUT MASTEF
NODE,

NASA Report Documentation Page

National Aeronautics and

Space Admmistration
1. Report No. NASA TM-100814 2. Government Accession No. 3. Recipient’'s Catalog No.
ICOMP-88-3
4. Title and Subtitle 5. Report Date

Distributed Computation of Graphics Primitives

on a Transputer Network 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Graham K. Ellis E-3999
10. Work Unit No.
505-63-1B

. Performing Organization Name and Address

. . P . 11. Contract or Grant No.
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered
! 12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 1a_ Sponsoring Agency Code

Washington, D.C. 20546-0001

15.

Supplementary Notes

Prepared for the 1988 Summer Computer Simulation Conference sponsored .by The
Society for Computer Simulation, Seattle, Washington, July 25-28, 1988. Graham
K. Ellis, Institute for Computational Mechanics in Propulsion, NASA Lewis
Research Center (work funded under Space Act Agreement C99066G) .

16.

Abstract

A method is developed for distributing the computation of graphics primitives on
a parallel processing network. Off-the-shelf transputer boards are used to per-
form the graphics transformations and scan-conversion tasks that would normally
be assigned to a single transputer based display processor. Each node in the
network performs a single graphics primitive computation. Frequently requested
tasks can be duplicated on several nodes. The results indicate that the current -
distribution of commands on the graphics network shows a performance degradation
when compared to the graphics display board alone. A change to more computation
per node for every communication (perform more complex tasks on each node) may
cause the desired increase in throughput.

. Key Words (Suggested by Author(s)) 18. Distribution Statement

Parallel processing; Transputer; Unclassified - Unlimited
Computer graphics; Multiple instruction; Subject Category 61
Multiple data stream

119,

22. Price*

A02

21. No of pages
1

Security Classif. (of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

